| -0.29412 | 0.487437 | 0.180328 | -0.29293 | 0 | 0.00149 | -0.53117 | -0.03333 | 0 |
| -0.88235 | -0.14573 | 0.081967 | -0.41414 | 0 | -0.20715 | -0.76687 | -0.66667 | 1 |
| -0.05882 | 0.839196 | 0.04918 | 0 | 0 | -0.30551 | -0.49274 | -0.63333 | 0 |
| -0.88235 | -0.10553 | 0.081967 | -0.53535 | -0.77778 | -0.16244 | -0.924 | 0 | 1 |
| 0 | 0.376884 | -0.34426 | -0.29293 | -0.60284 | 0.28465 | 0.887276 | -0.6 | 0 |
| -0.41177 | 0.165829 | 0.213115 | 0 | 0 | -0.23696 | -0.89496 | -0.7 | 1 |
| -0.64706 | -0.21608 | -0.18033 | -0.35354 | -0.79196 | -0.07601 | -0.85483 | -0.83333 | 0 |
| 0.176471 | 0.155779 | 0 | 0 | 0 | 0.052161 | -0.95218 | -0.73333 | 1 |
| -0.76471 | 0.979899 | 0.147541 | -0.09091 | 0.283688 | -0.09091 | -0.93168 | 0.066667 | 0 |
| -0.05882 | 0.256281 | 0.57377 | 0 | 0 | 0 | -0.86849 | 0.1 | 0 |
| -0.52941 | 0.105528 | 0.508197 | 0 | 0 | 0.120715 | -0.9035 | -0.7 | 1 |
| 0.176471 | 0.688442 | 0.213115 | 0 | 0 | 0.132638 | -0.60803 | -0.56667 | 0 |
| 0.176471 | 0.396985 | 0.311475 | 0 | 0 | -0.19225 | 0.163962 | 0.2 | 1 |
| -0.88235 | 0.899497 | -0.01639 | -0.53535 | 1 | -0.10283 | -0.72673 | 0.266667 | 0 |
| -0.17647 | 0.005025 | 0 | 0 | 0 | -0.10581 | -0.65329 | -0.63333 | 0 |
| 0 | 0.18593 | 0.377049 | -0.05051 | -0.45627 | 0.365127 | -0.59607 | -0.66667 | 0 |
| -0.17647 | 0.075377 | 0.213115 | 0 | 0 | -0.11774 | -0.8497 | -0.66667 | 0 |
| -0.88235 | 0.035176 | -0.5082 | -0.23232 | -0.80378 | 0.290611 | -0.91033 | -0.6 | 1 |
| -0.88235 | 0.155779 | 0.147541 | -0.39394 | -0.77305 | 0.031297 | -0.61486 | -0.63333 | 0 |
| -0.64706 | 0.266332 | 0.442623 | -0.17172 | -0.44444 | 0.171386 | -0.46541 | -0.8 | 1 |
| -0.05882 | -0.00503 | 0.377049 | 0 | 0 | 0.055142 | -0.73527 | -0.03333 | 1 |
| -0.17647 | 0.969849 | 0.47541 | 0 | 0 | 0.186289 | -0.68147 | -0.33333 | 0 |
| 0.058824 | 0.19598 | 0.311475 | -0.29293 | 0 | -0.13562 | -0.84202 | -0.73333 | 0 |
| 0.176471 | 0.256281 | 0.147541 | -0.47475 | -0.72813 | -0.07303 | -0.89155 | -0.33333 | 0 |
| -0.17647 | 0.477387 | 0.245902 | 0 | 0 | 0.174367 | -0.84714 | -0.26667 | 0 |
| -0.88235 | -0.02513 | 0.081967 | -0.69697 | -0.66903 | -0.3085 | -0.65073 | -0.96667 | 1 |
위와 같은 여러 측정값이 있을때 어떤 질병이 걸렸는지 아닌지를 학습시키는 과정이다.
마지막에 0,1 이 0이면 질병이 아니고 1이면 질병에 걸린것이다.
import tensorflow as tf
import numpy as np
# 데이터를 파일에서 가져온다.
xy = np.loadtxt('data-03-diabetes.csv', delimiter=',', dtype=np.float32)
# 처음부터 마지막 컬럼 전까지 측정값이다.
x_data = xy[:, 0:-1]
# 마지막 컬럼이 결과값이다.
y_data = xy[:, [-1]]
# 구성이 어떻게 되어있는지 출력해 준다.
print(x_data.shape, y_data.shape)
# n개의 데이터가 8개의 측정값으로 구성된다.
X = tf.placeholder(tf.float32, shape=[None, 8])
# n개 의 하나의 결과치로 구성된다.
Y = tf.placeholder(tf.float32, shape=[None, 1])
# 8개의 측정값이 있고 1개의 결과가 나온다.
W = tf.Variable(tf.random_normal([8, 1]), name='weight')
# 1개의 결과가 도출된다.
b = tf.Variable(tf.random_normal([1]), name='bias')
# 시그모이드함수로 가설을 세운다. 결과를 0,1 로만 나오게 하기위함이다.
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# cost 를 계산한다.
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
# cost 를 줄이도록 학습한다.
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
# 결과가 0.5 이상이면 1 아니면 0 이다.
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
# 계산된 결과가 결과 값과 같은지 확률을 계산한다.
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
# 세션을 할당하고 초기화 한다. with 문은 묶인것? 이라고 보면됨.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 10001 번의 루프를 돌면서 파일의 내용을 학습한다.
for step in range(10001):
cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
# 200 번 돌때마다 화면에 step 과 cost 를 출력한다.
if step % 200 == 0:
print(step, cost_val)
# 실재로 학습된 결과로 다시 파일의 내용을 측정해보고 얼마나 정확한지 Accuracy 를 출력해본다.
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect (Y): ", c, "\nAccuracy: ", a)
위 내용의 출력은 Hypothesis 는 학습한 결과 로직에 파일의 내용을 대입했을때 각각에 대한 결과 값이며
Correct 는 결과값에 대한 1,0 을 나타내고 이 값이 실제 값과 얼마나 맞는지 Accuracy 로 나타내는 것입니다.
결과에서보듯이 Accuracy: ', 0.76679844) 으로 76 프로의 확률로 질병인지 아닌지를 판별 가능합니다.
결과
((759, 8), (759, 1))
(0, 0.97422194)
(200, 0.73380584)
(400, 0.68054277)
(600, 0.65738314)
(800, 0.64050609)
(1000, 0.62598956)
(1200, 0.61303777)
(1400, 0.60139638)
(1600, 0.59091467)
(1800, 0.58146954)
(2000, 0.57295144)
(2200, 0.56526166)
(2400, 0.55831152)
(2600, 0.5520215)
(2800, 0.54632038)
(3000, 0.54114515)
(3200, 0.53643954)
(3400, 0.53215361)
(3600, 0.52824324)
(3800, 0.52466929)
(4000, 0.52139693)
(4200, 0.51839536)
(4400, 0.51563752)
(4600, 0.51309913)
(4800, 0.5107587)
(5000, 0.50859725)
(5200, 0.50659776)
(5400, 0.50474519)
(5600, 0.50302613)
(5800, 0.50142831)
(6000, 0.49994111)
(6200, 0.498555)
(6400, 0.49726117)
(6600, 0.49605182)
(6800, 0.49492007)
(7000, 0.49385962)
(7200, 0.49286455)
(7400, 0.4919301)
(7600, 0.49105117)
(7800, 0.49022377)
(8000, 0.48944411)
(8200, 0.48870838)
(8400, 0.48801363)
(8600, 0.48735696)
(8800, 0.4867357)
(9000, 0.48614722)
(9200, 0.48558944)
(9400, 0.48506039)
(9600, 0.48455814)
(9800, 0.48408091)
(10000, 0.48362702)
('\nHypothesis: ', array([[ 0.3700318 ],
[ 0.91548049],
[ 0.21602735],
[ 0.94834936],
[ 0.08354768],
[ 0.76475239],
[ 0.94660914],
[ 0.62400973],
[ 0.24575189],
[ 0.53068644],
[ 0.70052218],
[ 0.17214663],
[ 0.16543275],
[ 0.2199429 ],
[ 0.71247756],
[ 0.45385256],
[ 0.73282206],
[ 0.86161494],
[ 0.81474245],
[ 0.55559713],
[ 0.64010382],
[ 0.10689519],
[ 0.68355203],
[ 0.7439062 ],
[ 0.36421007],
[ 0.93936747],
[ 0.65599263],
[ 0.62544471],
[ 0.65211362],
[ 0.40692747],
[ 0.96217412],
[ 0.8779099 ],
[ 0.58168429],
[ 0.78780311],
[ 0.37508687],
[ 0.60115689],
[ 0.78435332],
[ 0.39770976],
[ 0.53502363],
[ 0.31824091],
[ 0.84450388],
[ 0.15713443],
[ 0.41641977],
[ 0.03135979],
[ 0.52673358],
[ 0.91592908],
[ 0.70154351],
[ 0.7093997 ],
[ 0.94602114],
[ 0.93769354],
[ 0.94463712],
[ 0.24789676],
[ 0.32195851],
[ 0.96026611],
[ 0.23895976],
[ 0.42620692],
[ 0.06667964],
[ 0.75892609],
[ 0.84101737],
[ 0.5098418 ],
[ 0.93055457],
[ 0.70813578],
[ 0.65229744],
[ 0.85724914],
[ 0.54217255],
[ 0.45803586],
[ 0.96486694],
[ 0.76065105],
[ 0.83716953],
[ 0.70461416],
[ 0.25252232],
[ 0.75770098],
[ 0.90561688],
[ 0.92974299],
[ 0.85952842],
[ 0.7762509 ],
[ 0.42486441],
[ 0.86663973],
[ 0.90810114],
[ 0.9136045 ],
[ 0.86388415],
[ 0.84419137],
[ 0.36394182],
[ 0.80408216],
[ 0.55200076],
[ 0.88440698],
[ 0.52416229],
[ 0.90309417],
[ 0.92851454],
[ 0.79115593],
[ 0.82531822],
[ 0.64373761],
[ 0.71719068],
[ 0.62347317],
[ 0.90414244],
[ 0.97909069],
[ 0.9090113 ],
[ 0.5846414 ],
[ 0.16190986],
[ 0.65837079],
[ 0.63592726],
[ 0.96599692],
[ 0.67171514],
[ 0.72297561],
[ 0.88660306],
[ 0.72767776],
[ 0.93054253],
[ 0.86267883],
[ 0.568232 ],
[ 0.32958367],
[ 0.94322944],
[ 0.85151732],
[ 0.44822001],
[ 0.39299121],
[ 0.62763005],
[ 0.79084569],
[ 0.85894799],
[ 0.93857807],
[ 0.14030881],
[ 0.72902209],
[ 0.86476177],
[ 0.61664152],
[ 0.64215124],
[ 0.77957445],
[ 0.70592678],
[ 0.8574369 ],
[ 0.82025975],
[ 0.54896337],
[ 0.57049835],
[ 0.31858006],
[ 0.45877916],
[ 0.75337428],
[ 0.93821293],
[ 0.8635385 ],
[ 0.80116081],
[ 0.87013012],
[ 0.42006519],
[ 0.81549966],
[ 0.72602177],
[ 0.7184816 ],
[ 0.89642775],
[ 0.63532913],
[ 0.61051702],
[ 0.67205024],
[ 0.91157383],
[ 0.64918935],
[ 0.44098884],
[ 0.93719947],
[ 0.63372022],
[ 0.7613014 ],
[ 0.23399186],
[ 0.32680222],
[ 0.12558192],
[ 0.23778123],
[ 0.90760028],
[ 0.86234099],
[ 0.95348269],
[ 0.12552066],
[ 0.5343293 ],
[ 0.80264574],
[ 0.64998204],
[ 0.84879887],
[ 0.38238314],
[ 0.79798627],
[ 0.63381225],
[ 0.57953382],
[ 0.69325584],
[ 0.88282448],
[ 0.77005243],
[ 0.6494112 ],
[ 0.85252994],
[ 0.85940075],
[ 0.95391518],
[ 0.2406517 ],
[ 0.79474664],
[ 0.27039859],
[ 0.37937924],
[ 0.30925179],
[ 0.88998455],
[ 0.68779784],
[ 0.93218398],
[ 0.9017601 ],
[ 0.59797442],
[ 0.13032866],
[ 0.17434558],
[ 0.52043444],
[ 0.74812824],
[ 0.67661554],
[ 0.82810497],
[ 0.66003388],
[ 0.36263257],
[ 0.18541756],
[ 0.90922511],
[ 0.41367313],
[ 0.85321277],
[ 0.90625882],
[ 0.68145704],
[ 0.68510389],
[ 0.56336015],
[ 0.55329156],
[ 0.67773241],
[ 0.95872444],
[ 0.77101249],
[ 0.81279922],
[ 0.13762411],
[ 0.33096361],
[ 0.90895218],
[ 0.22505347],
[ 0.93034929],
[ 0.27977678],
[ 0.28565744],
[ 0.52054799],
[ 0.75011629],
[ 0.2057087 ],
[ 0.75803435],
[ 0.74818891],
[ 0.72012281],
[ 0.649068 ],
[ 0.11264303],
[ 0.27403602],
[ 0.71924561],
[ 0.50751901],
[ 0.92561573],
[ 0.94974613],
[ 0.70573455],
[ 0.33144569],
[ 0.01243345],
[ 0.73282492],
[ 0.31322715],
[ 0.4551864 ],
[ 0.95112997],
[ 0.61192042],
[ 0.95621103],
[ 0.2124781 ],
[ 0.13730334],
[ 0.26409647],
[ 0.74600202],
[ 0.90616345],
[ 0.8902337 ],
[ 0.6388824 ],
[ 0.59054673],
[ 0.61427677],
[ 0.1180374 ],
[ 0.56492639],
[ 0.12032915],
[ 0.59470803],
[ 0.87652451],
[ 0.65327024],
[ 0.70130438],
[ 0.96059424],
[ 0.81715578],
[ 0.74806231],
[ 0.70854938],
[ 0.73317331],
[ 0.87156576],
[ 0.38832107],
[ 0.48885614],
[ 0.45576379],
[ 0.78635192],
[ 0.65694213],
[ 0.67967415],
[ 0.78093886],
[ 0.26716092],
[ 0.37469891],
[ 0.47442526],
[ 0.62990814],
[ 0.31520733],
[ 0.92032582],
[ 0.76051152],
[ 0.9225775 ],
[ 0.56285393],
[ 0.75419909],
[ 0.8239823 ],
[ 0.84951991],
[ 0.60194135],
[ 0.83998787],
[ 0.3606706 ],
[ 0.64815956],
[ 0.73978502],
[ 0.38866496],
[ 0.79204822],
[ 0.24882402],
[ 0.5482083 ],
[ 0.94952369],
[ 0.81041384],
[ 0.86216229],
[ 0.69616514],
[ 0.38970423],
[ 0.62187248],
[ 0.4183417 ],
[ 0.47441801],
[ 0.65190297],
[ 0.65728629],
[ 0.6830765 ],
[ 0.54236895],
[ 0.18214154],
[ 0.70659906],
[ 0.92117071],
[ 0.48371741],
[ 0.64411545],
[ 0.79061466],
[ 0.5516873 ],
[ 0.78574431],
[ 0.43543452],
[ 0.66561157],
[ 0.89265811],
[ 0.66950232],
[ 0.74058968],
[ 0.86831808],
[ 0.4409264 ],
[ 0.87412518],
[ 0.95516002],
[ 0.31215015],
[ 0.814825 ],
[ 0.28057489],
[ 0.78481698],
[ 0.81692725],
[ 0.72387695],
[ 0.40729514],
[ 0.77939034],
[ 0.79634446],
[ 0.72602904],
[ 0.21197815],
[ 0.8400166 ],
[ 0.88320941],
[ 0.43998408],
[ 0.95368844],
[ 0.24628602],
[ 0.72565627],
[ 0.95856625],
[ 0.25511125],
[ 0.38668022],
[ 0.6652211 ],
[ 0.32212332],
[ 0.18379892],
[ 0.86391807],
[ 0.91269827],
[ 0.84217131],
[ 0.61256701],
[ 0.61782426],
[ 0.61188555],
[ 0.77833873],
[ 0.81998533],
[ 0.94705737],
[ 0.72018093],
[ 0.74858665],
[ 0.59124976],
[ 0.92642969],
[ 0.94356465],
[ 0.65994716],
[ 0.28874373],
[ 0.63262123],
[ 0.3437618 ],
[ 0.78724736],
[ 0.18558833],
[ 0.26064605],
[ 0.42378923],
[ 0.66341972],
[ 0.32271567],
[ 0.58867538],
[ 0.85246617],
[ 0.64628965],
[ 0.86076248],
[ 0.95665103],
[ 0.78148979],
[ 0.03902068],
[ 0.34683421],
[ 0.84605324],
[ 0.8765325 ],
[ 0.6374535 ],
[ 0.27857929],
[ 0.91155159],
[ 0.89422792],
[ 0.29613292],
[ 0.57005429],
[ 0.82590932],
[ 0.86692053],
[ 0.83554876],
[ 0.87239408],
[ 0.89825457],
[ 0.93942589],
[ 0.6399861 ],
[ 0.61046797],
[ 0.55338383],
[ 0.81445491],
[ 0.87089962],
[ 0.23334222],
[ 0.79859608],
[ 0.89199734],
[ 0.27992699],
[ 0.48323703],
[ 0.83799082],
[ 0.58467913],
[ 0.90261441],
[ 0.30262965],
[ 0.83026654],
[ 0.67043459],
[ 0.87681431],
[ 0.38466313],
[ 0.69479674],
[ 0.6945852 ],
[ 0.79477954],
[ 0.07643868],
[ 0.17290844],
[ 0.63485622],
[ 0.8155424 ],
[ 0.38170969],
[ 0.81980556],
[ 0.50480503],
[ 0.38023195],
[ 0.78097284],
[ 0.42587543],
[ 0.89842463],
[ 0.85083252],
[ 0.65622354],
[ 0.91650057],
[ 0.66925991],
[ 0.77402496],
[ 0.35418713],
[ 0.32064435],
[ 0.75412351],
[ 0.46952865],
[ 0.52253413],
[ 0.90150231],
[ 0.8999266 ],
[ 0.91271299],
[ 0.95233107],
[ 0.70150965],
[ 0.83610052],
[ 0.38574633],
[ 0.39738071],
[ 0.47271663],
[ 0.9415037 ],
[ 0.53401273],
[ 0.18898869],
[ 0.93297368],
[ 0.84650695],
[ 0.49440587],
[ 0.80312306],
[ 0.00960753],
[ 0.9207955 ],
[ 0.80055183],
[ 0.78211099],
[ 0.82033581],
[ 0.96801269],
[ 0.60169435],
[ 0.79016757],
[ 0.64055496],
[ 0.85740662],
[ 0.23814832],
[ 0.54446751],
[ 0.92111409],
[ 0.63316137],
[ 0.76309925],
[ 0.93186283],
[ 0.83781093],
[ 0.87973046],
[ 0.44431299],
[ 0.81623119],
[ 0.95681429],
[ 0.75897533],
[ 0.65700543],
[ 0.32950929],
[ 0.41978225],
[ 0.57137984],
[ 0.63863689],
[ 0.53501093],
[ 0.78830326],
[ 0.59427124],
[ 0.75114721],
[ 0.8545512 ],
[ 0.79672927],
[ 0.6231361 ],
[ 0.50591552],
[ 0.61367357],
[ 0.94594318],
[ 0.86947989],
[ 0.23167524],
[ 0.47079161],
[ 0.43242708],
[ 0.08282863],
[ 0.88935143],
[ 0.14215669],
[ 0.89593852],
[ 0.86194164],
[ 0.83440799],
[ 0.62860483],
[ 0.88424885],
[ 0.35417128],
[ 0.77151752],
[ 0.94070786],
[ 0.38943192],
[ 0.42330423],
[ 0.88944346],
[ 0.86382997],
[ 0.58552653],
[ 0.80563533],
[ 0.79816794],
[ 0.7988252 ],
[ 0.35251015],
[ 0.74067354],
[ 0.87144709],
[ 0.5967558 ],
[ 0.79510927],
[ 0.76162237],
[ 0.8073532 ],
[ 0.83968359],
[ 0.94706494],
[ 0.67303115],
[ 0.4091976 ],
[ 0.78243226],
[ 0.75207752],
[ 0.97216964],
[ 0.79477125],
[ 0.70435488],
[ 0.37024301],
[ 0.7241599 ],
[ 0.91122055],
[ 0.95512819],
[ 0.92075676],
[ 0.72720742],
[ 0.62702626],
[ 0.80907917],
[ 0.42198959],
[ 0.76834798],
[ 0.77097958],
[ 0.85370839],
[ 0.6119234 ],
[ 0.70903111],
[ 0.85344613],
[ 0.48009148],
[ 0.47600701],
[ 0.63377106],
[ 0.73435646],
[ 0.58657551],
[ 0.92218083],
[ 0.92802793],
[ 0.24493484],
[ 0.11743274],
[ 0.80530161],
[ 0.55715519],
[ 0.22469106],
[ 0.83270478],
[ 0.90140408],
[ 0.67879641],
[ 0.94124955],
[ 0.91504407],
[ 0.80182153],
[ 0.82581061],
[ 0.68717331],
[ 0.57794136],
[ 0.76354223],
[ 0.61091614],
[ 0.14149426],
[ 0.90590137],
[ 0.89553386],
[ 0.68140399],
[ 0.91510576],
[ 0.86624211],
[ 0.90311909],
[ 0.63437551],
[ 0.74434739],
[ 0.86853498],
[ 0.71422499],
[ 0.87389636],
[ 0.92433679],
[ 0.53835928],
[ 0.82471567],
[ 0.82216066],
[ 0.45614845],
[ 0.55160421],
[ 0.07508863],
[ 0.25541744],
[ 0.84423894],
[ 0.66269827],
[ 0.67233992],
[ 0.48981878],
[ 0.93197519],
[ 0.46693403],
[ 0.81212068],
[ 0.23049167],
[ 0.8926242 ],
[ 0.27195424],
[ 0.79920727],
[ 0.54222172],
[ 0.7750569 ],
[ 0.55724913],
[ 0.27887404],
[ 0.77221799],
[ 0.93629682],
[ 0.39858431],
[ 0.92797887],
[ 0.86264396],
[ 0.85393304],
[ 0.8187632 ],
[ 0.42240217],
[ 0.34413046],
[ 0.64388883],
[ 0.13661328],
[ 0.95413154],
[ 0.39051205],
[ 0.93976825],
[ 0.8957867 ],
[ 0.43772212],
[ 0.18767704],
[ 0.63602334],
[ 0.46848196],
[ 0.83219928],
[ 0.71974903],
[ 0.98327386],
[ 0.43412197],
[ 0.6611377 ],
[ 0.79943466],
[ 0.65891474],
[ 0.04487875],
[ 0.76604009],
[ 0.79205447],
[ 0.85389841],
[ 0.6441347 ],
[ 0.45210445],
[ 0.60599113],
[ 0.90391999],
[ 0.58050025],
[ 0.81843752],
[ 0.80364263],
[ 0.88844115],
[ 0.8134402 ],
[ 0.56198764],
[ 0.78616703],
[ 0.9003914 ],
[ 0.67731243],
[ 0.96727574],
[ 0.809111 ],
[ 0.61540902],
[ 0.50250506],
[ 0.79200083],
[ 0.8376326 ],
[ 0.49874461],
[ 0.69587892],
[ 0.28857082],
[ 0.63699603],
[ 0.8366307 ],
[ 0.95523489],
[ 0.84366626],
[ 0.77009255],
[ 0.72999692],
[ 0.90502757],
[ 0.49800131],
[ 0.9446072 ],
[ 0.4642227 ],
[ 0.79023659],
[ 0.34313145],
[ 0.05604664],
[ 0.33493057],
[ 0.36218202],
[ 0.6980837 ],
[ 0.84458369],
[ 0.58753741],
[ 0.76824254],
[ 0.81240612],
[ 0.59036416],
[ 0.39017186],
[ 0.88041461],
[ 0.90800041],
[ 0.34558284],
[ 0.60365367],
[ 0.20400006],
[ 0.41466662],
[ 0.74312049],
[ 0.71328449],
[ 0.89530599],
[ 0.97939771],
[ 0.20553096],
[ 0.75263506],
[ 0.57520759],
[ 0.37561539],
[ 0.72092003],
[ 0.73230755],
[ 0.89490426],
[ 0.70991588],
[ 0.49394774],
[ 0.58987445],
[ 0.17812283],
[ 0.65061325],
[ 0.55043185],
[ 0.90546948],
[ 0.59859502],
[ 0.63834715],
[ 0.80110824],
[ 0.73684454],
[ 0.37900406],
[ 0.75590736],
[ 0.61501664],
[ 0.26063639],
[ 0.58096701],
[ 0.91178626],
[ 0.83766162],
[ 0.60308468],
[ 0.80692071],
[ 0.32273334],
[ 0.83016229],
[ 0.62737674],
[ 0.78778106],
[ 0.40930733],
[ 0.6811735 ],
[ 0.8340646 ],
[ 0.15815164],
[ 0.27006996],
[ 0.78574777],
[ 0.81408614],
[ 0.76922286],
[ 0.90127355],
[ 0.78598487],
[ 0.72430772],
[ 0.76133782],
[ 0.74655616],
[ 0.68669134],
[ 0.79273158],
[ 0.50835574],
[ 0.46117181],
[ 0.88204658],
[ 0.82784206],
[ 0.66061914],
[ 0.29658586],
[ 0.88612473],
[ 0.76964337],
[ 0.82751465],
[ 0.69222766],
[ 0.86061233],
[ 0.86218196],
[ 0.73982066],
[ 0.40291801],
[ 0.90435588],
[ 0.92673653],
[ 0.29239351],
[ 0.14486505],
[ 0.75177014],
[ 0.38205963],
[ 0.73507577],
[ 0.36591637],
[ 0.47245231],
[ 0.33215329],
[ 0.79763252],
[ 0.87367302],
[ 0.15875711],
[ 0.37841156],
[ 0.54074955],
[ 0.49625945],
[ 0.51185215],
[ 0.77610594],
[ 0.16323733],
[ 0.91351545],
[ 0.1940887 ],
[ 0.85807306],
[ 0.74741662],
[ 0.71906632],
[ 0.8625043 ],
[ 0.68273556],
[ 0.88680202]], dtype=float32), '\nCorrect (Y): ', array([[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 0.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 0.],
[ 1.],
[ 0.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.],
[ 1.]], dtype=float32), '\nAccuracy: ', 0.76679844)
'TensorFlow Python' 카테고리의 다른 글
| (모두를 위한 딥러닝) 동물 분류 하기 (0) | 2017.11.01 |
|---|---|
| (모두를 위한 딥러닝) Softmax (0) | 2017.10.31 |
| (모두를 위한 딥러닝) Gradient descent (0) | 2017.10.31 |
| 쳇봇관련 - 링크 (0) | 2017.10.28 |
| NSML (0) | 2017.10.28 |
data-03-diabetes.csv